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Abstract Multilevel augmentation method with wavelet bases is demonstrated to
show as the fast technique for solving singularly perturbed problems. Linear and
quadratic wavelet bases are employed for constructing the full form of matrix system.
To reduce the size of matrix coefficients, the multilevel augmented technique is applied
at each current basis level. It is found that the multilevel augmentation method is faster
than the standard multilevel method at the same order of accuracy. Convergent rates
for linear and quadratic bases are 2 and 4 respectively. By the application of wavelet
bases, numerical accuracy can be easily improved by increasing just desired levels in
the multilevel augmentation process.

Keywords Multilevel augmentation method · Singularly perturbed problem ·
Wavelet basis functions

1 Introduction

Singularly perturbed problem arises in various branches of applied science, for exam-
ple, in the theory of fluid dynamics, chemical reactor, etc. It involves a small parameter
multiplying the highest derivative in the governing equation. When the value of this
parameter becomes very small, the unknown solution behaves very large change in a
particular portion of domain. Standard numerical method usually fails to detect solu-
tion behavior [9]. In this work, the multilevel augmentation method is proposed to
solve singularly perturbed problem. The main concept is using an approximate basis
function for the solution space of the governing equation, and then projecting the terms
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of approximate solution on the functional basis space. This process provides residual
that should be minimized with respect to the functional basis. By this concept, the
accuracy of numerical solution depends directly on the type of basis function.

Wavelet basis functions, in the forms of linear and quadratic polynomials, are
employed in the multilevel augmentation method. Full forms of stiffness matrices are
presented. Wavelets in our consideration are compactly supported. It was presented
previously by Chen et al. [5]. They introduced the multilevel augmentation method for
solving certain boundary value problems. This method has also been applied to solve
the sine-Gordon equation in [3] and some types of nonlinear boundary value problems
in [2]. For solving the partial differential equations, the wavelet applications have been
introduced by several authors, such as a wavelet-Galerkin method for solving parabolic
equations [8], the singularly perturbed convection-dominated diffusion equation [6],
non-homogeneous heat and wave equations [7], some types of elliptic problems [1],
diffusion equation [4], and by a non-standard algorithm with a variable step size in
[10].

In the present work, we consider both linear and quadratic wavelet bases in the
multilevel augmentation method. Its advantages are fast and accurate for solving dif-
ferential equations. We show that numerical accuracy is easily improved by increasing
just wavelet levels in the multilevel augmentation method.

The paper is organized as follows. We introduce the concept of wavelet basis func-
tions in Sect. 2. Details of the multilevel augmentation method using wavelet bases to
solve numerically the singularly perturbed problem are presented in Sect. 3. Numerical
results are shown in Sect. 4. Finally, we have made some conclusions in Sect. 5.

2 Construction of wavelet basis

The construction of the wavelet basis functions used in the Galerkin method follows
the derivations proposed by Chen et al. [5]. They constructed multi-scale orthonormal
bases for the Sobolev space H1

0 (I ) on the unit interval I := [0, 1]. Let Xn be the
subspace of H1

0 (I ) whose elements are the piecewise polynomials of order k with
knots j/μn, j − 1 ∈ Zμn−1, where Zm := {0, 1, 2, . . . , m − 1} , k > 2 and μ > 1
be a fixed positive integer. They have that

X0 = span
{

x j+1 (1 − x) : j ∈ Zk−2

}
,

and let Wn be the orthonormal complement of Xn+1in Xn , i.e.,

Xn = Xn−1 ⊕⊥ Wn,

and thus using this decomposition leads to

Xn = X0 ⊕⊥ W1 ⊕⊥ · · · ⊕⊥ Wn .

After W1 has been given, the spacesWncan be recursively constructed using the family
of affine mappings �μ := {

φe : e ∈ Zμ

}
where
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φe(x) = x + e

μ
; e ∈ Zμ.

Hence, the wavelet basis function wi j ∈ Wi , i = 2, 3, . . . , j = 0, 1, . . . , dim
Wi − 1, n = i − 1, l ∈ Zr , r = dim W1 can be constructed by the following
composition,

wi j = μ
n
(
− 1

2

)
w1l ◦ φ−1

e (x) ; e ∈ Zi−1
μ . (1)

where Zk
μ = Zμ × Zμ × · · · × Zμ, k times.

This construction will be applied to obtain both linear and quadratic wavelet bases
used in our work in the next sections.

2.1 Linear wavelet basis

When choosing k = 2, μ = 2, r = 1 and dim Wi = 2i−1 for i > 0, l, Zμ, and e
are given by

l ∈ Zr = {0} , e ∈ Zμ = {0, 1} ,

and

φ0 (x) = x

2
, φ1 (x) = x + 1

2
,

The desired basis of W1 (level 1) is obtained by

w10 (x) =
{

x ; x ∈ [
0, 1

2

)
1 − x ; x ∈ [ 1

2 , 1
] . (2)

The next basis level w2 j can be obtained from the mapping wi j = μ

(
− 1

2

)
w1l ◦φ−1

e (x)

as shown in by the following.
Construction of W2 from W1

e w1l �−1
e (x) w2 j

0 w10 2x w20 (x) =
⎧⎨
⎩

1√
2

(2x) ; x ∈
[
0, 1

4

)

1√
2

(1 − 2x) ; x ∈
[

1
4 , 1

2

]

1 w10 2x − 1 w21 (x) =
⎧⎨
⎩

1√
2

(2x − 1) ; x ∈
[

1
2 , 3

4

)

1√
2

(2 − 2x) ; x ∈
[

3
4 , 1

]

Next, w3 j can be obtained from w3 j = μ
2
(

1
2 −1

)
w1l ◦ φ−1

e (x) = 1
2w1l ◦ φ−1

e (x)

Graphs of these three linear wavelet basis W1, W2, and W3 are shown in Fig. 1. Any
further linear wavelet levels can be obtained recursively by the same constructions.
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Fig. 1 Graphs of linear wavelet basis W1, W2 and W3

2.2 Quadratic wavelet basis

In this case, we have to choose k = 3, μ = 2, r = 2 and dim Wi = 2i for i > 0.
The desired quadratic bases W0 and W1 can be constructed by giving the mother

level as

w00 (x) = √
3x(1 − x) ; x ∈ [0, 1] , (3)

w10 (x) =
{

x (1 − 3x) ; x ∈ [
0, 1

2

)
(1 − x) (3x − 2) ; x ∈ [ 1

2 , 1
] , (4)

w11 (x) =
{√

3x (1 − 2x) ; x ∈ [
0, 1

2

)
√

3 (1 − x) (1 − 2x) ; x ∈ [ 1
2 , 1

] . (5)

The second wavelet level W2 is obtained by the mapping,

w2 j = μ

(
− 1

2

)
w1l ◦ φ−1

e (x) = 1√
2
w1l ◦ φ−1

e (x) .

Details of constructions are shown by the following.
Construction of W2 from W1
Similarly, the third level of quadratic basis W3 is obtained by

w3 j = μ
2
(
− 1

2

)
w1l ◦ φ−1

e (x) = 1

2
w1l ◦ φ−1

e (x)

Graphs of quadratic wavelet basis W0, W1, and W2 are shown in Fig. 2.
In this work, we will apply these two types of wavelet basis to solve the singularly

perturbed problem based on the multilevel augmentation method described in the next
section.
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e w1l �−1
e (x) w2 j

0 w10 2x w20 (x) =
⎧⎨
⎩

1√
2

(2x) (1 − 6x) ; x ∈
[
0, 1

4

)

1√
2

(1 − 2x) (6x − 2) ; x ∈
[

1
4 , 1

2

]

0 w11 2x w21 (x) =
⎧⎨
⎩

√
3√
2

(2x) (1 − 4x) ; x ∈
[
0, 1

4

)
√

3√
2

(1 − 2x) (1 − 4x) ; x ∈
[

1
4 , 1

2

]

1 w10 2x − 1 w22 (x) =
⎧⎨
⎩

1√
2

(4 − 6x) (2x − 1) ; x ∈
[

1
2 , 3

4

)

1√
2

(2 − 2x) (6x − 5) ; x ∈
[

3
4 , 1

]

1 w11 2x − 1 w23 (x) =
⎧⎨
⎩

√
3√
2

(2x − 1) (3 − 4x) ; x ∈
[

1
2 , 3

4

)
√

3√
2

(2 − 2x) (3 − 4x) ; x ∈
[

3
4 , 1

]

Fig. 2 Graphs of quadratic wavelet basis W0, W1 and W2

3 Multilevel augmentation method

To demonstrate the applications of multilevel augmentation method for solving the
singularly perturbed problem, we consider the second-order boundary value problem
in the form of

ε
∂2u

∂x2 + ∂u

∂x
− u = 1, 0 < x < 1, (6)

where ε is perturbation parameter (0 < ε � 1). We will show the derivation of mul-
tilevel augmentation method to this simplified equation. Extended domain or higher-
order derivatives involved can be considered in a similar way.

Boundary conditions are specified by

u (0) = 0 and u (1) = 0. (7)
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Approximate solution is assumed to be

u (x) =
M∑

i=1

dim(i)∑
j=0

wi j (x)ci j , (8)

where ci j are the coefficients to be approximated, wi j (x) is the wavelet basis, M is
the number of level in the multilevel wavelet.

Setting {w} = {
wi j (x)

}
and {c} = {

ci j
}
, for i = 1, 2, 3, . . . , M, i is the i th level,

j = 0, 1, . . . , dim Wi − 1. Equation (6) can be written in a matrix form as

{[ϕBr ] − [ϕCr ] + [ϕAr ]}
{
ci j

} = −{ϕEr } , (9)

where

[ϕAr ] =
1∫

0

{w} {w}T dx (10)

[ϕBr ] = ε

1∫

0

{
dw

dx

}{
dw

dx

}T

dx (11)

[ϕCr ] =
1∫

0

{w}
{

dw

dx

}T

dx (12)

{ϕEr } =
1∫

0

{w} dx (13)

Here [ϕAr ], [ϕBr ], [ϕCr ], and {ϕEr } are coefficient matrices. Subscript r denotes to
linear wavelet (if r is l) or the quadratic wavelet (if r is q).

Equation (9) can be written in a linear system as

[P]
{
ci j

} = {S} , (14)

where [P] = {[ϕBr ] − [ϕCr ] + [ϕAr ]} , {S} = − {ϕEr }. We have to solve this linear
system to find

{
ci j

}
for i = 1, 2, 3, . . ., and j = 0, 1, . . . , dim Wi −1. Hence, we can

obtain approximate solution.
Traditionally, the system of linear equation (14) can be solved iteratively by any

standard schemes. Size of linear system depends on the number of unknowns result-
ing from the number of basis level. Since, we have applied multilevel approximation,
it is easily to take the advantage of augmentation concept to reduce the number of
unknowns in the linear system at each level. This is the concept of multilevel augmen-
tation method. Summarized details are given as follows.

Step 1:
Solve

{
ci j

}
by multilevel method of level M from equation (14).
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Step 2:

Set
{

c0
i j

}
= {

ci j
}

for level M .

Step 3:

Solve
{

c1
nj

}
for level M + 1 by the multilevel augmentation method from

[P](r×r)

{
c1

nj

}
(r×1)

= {S}(r×1) . (15)

From Equation (15), splitting matrices [P]r×r ,
{

c1
nj

}
r×1

and {S}r×1 as

[
A B
C D

]

(r×r)

{
c1

i j
c1
(M+1) j

}

(r×1)

=
{

Si j

S(M+1) j

}

(r×1)

, (16)

where

A= [A]e×e , B = [B]e×(r−e) ,

C = [C](r−e)×e , D = [D](r−e)×(r−e) ,

e = dim XM , r = dim XM+1.

Equation (16) can be rewritten as

[
A B
0 D

]

r×r

{
c1

i j
c1
(M+1) j

}

r×1

+
[

0 0
C 0

]

r×r

{
c1

i j
0

}

r×1

=
{

Si j

S(M+1) j

}

r×1
,

[
A B
0 D

]

r×r

{
c1

i j
c1
(M+1) j

}

r×1

+
{

0

C
(

c1
i j

)
}

r×1

+
{

0

C
(

c0
i j

)
}

r×1

−
{

0

C
(

c0
i j

)
}

r×1

=
{

Si j

S(M+1) j

}

r×1
,

[
A B
0 D

]

r×r

{
c1

i j
c1
(M+1) j

}

r×1

+
{

0

C
(

c0
i j

)
}

r×1

=
{

Si j

S(M+1) j

}

r×1
−

{
0

C
(
c1

i j −c0
i j

)
}

r×1

,

where

{
0

C
(

c1
i j − c0

i j

)
}

r×1

is the error vector in the multilevel augmentation method.

This error term converges to zero when the number of the basis level is very large, see
proof in Chen et al. [5].

Next, we approximate the augmented system by

[
A B
0 D

]

r×r

{
c1

i j
c1
(M+1) j

}

r×1

=
{

Si j

S(M+1) j

}

r×1
−

{
0

C
(

c0
i j

)
}

r×1

. (17)

Thus, we can calculate
{

c1
i j

}
e×1

and
{

c1
(M+1) j

}
(r−e)×1

from Eq. (17) by

123



J Math Chem (2013) 51:2328–2339 2335

[D](r−e)×(r−e)

{
c1
(M+1) j

}
(r−e)×1

={
S(M+1) j

}
(r−e)×1−[C](r−e)×e

{
c0

i j

}
e×1

, (18)

[A]e×e

{
c1

i j

}
e×1

= {
Si j

}
e×1 − [B]e×(r−e)

{
c1
(M+1) j

}
(r−e)×1

. (19)

We solve system (18) directly to find
{

c1
(M+1) j

}
(r−e)×1

, and then substituting these

values into the RHS of Eq. (19) to find
{

c1
i j

}
e×1

. This completes the overall steps in

the multilevel augmentation method for level M + 1. It shows that computational cost
at level M +1 is reduced when comparing with standard multilevel method by the use
of augmented systems (18) and (19).

For example, consider the multilevel augmentation method of level 3 with linear
wavelet basis.

Step 1:
Solve

{
ci j

}
in the multilevel method of level 2 (i = 1, 2 for linear wavelet bases

and j = 0, 1, . . . , dim Wi − 1) from equation

[P](3×3)

{
ci j

}
(3×1)

= {S}(3×1) ,

Step 2:

Set
{

c0
i j

}
= {

ci j
}

for level 2,
⎧⎪⎨
⎪⎩

c0
10

c0
20

c0
21

⎫⎪⎬
⎪⎭

=
⎧⎨
⎩

c10
c20
c21

⎫⎬
⎭ .

Step 3:

Solve
{

c1
nj

}
for level 3 by the multilevel augmentation method,

[P](7×7)

{
c1

nj

}
(7×1)

= {S}(7×1) .

Splitting [P] to matrices [A] , [B] , [C] and [D],

[P](7×7)

{
c1

nj

}
(7×1)

= {S}(7×1) ,

[
A B
C D

]

(7×7)

{
c1

nj

}
(7×1)

= {S}(7×1) ,

Splitting matrices
{

c1
nj

}
(7×1)

and {S}(7×1) by setting

{
c1

nj

}
(7×1)

=
{

c1
i j

c1
(M+1) j

}

(7×1)

,

{S}(7×1) =
{

Si j

S(M+1) j

}

(7×1)

.
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Solve
{

c1
nj

}
7×1

for level 3 from equation

[
A B
0 D

]

(7×7)

{
c1

i j
c1
(M+1) j

}

(7×1)

=
{

Si j

S(M+1) j

}

(7×1)

−
{

0

C
(

c0
i j

)
}

(7×1)

,

Find
{

c1
(M+1) j

}
4×1

of level 3 from equation

[D](4×4)

{
c1
(M+1) j

}
(4×1)

= {
S(M+1) j

}
(4×1)

− [C](4×3)

{
c0

i j

}
(3×1)

,

This system can be solved easily since the matrix coefficient is diagonal for linear
wavelet and becomes tri-diagonal for quadratic wavelet.

Finally, solve
{

c1
i j

}
3×1

of level 3 from equation

[A](3×3)

{
c1

i j

}
(3×1)

= {
Si j

}
(3×1)

− [B](3×4)

{
c1
(M+1) j

}
(4×1)

.

Thus, we can find all coefficients in the solution expansion for level 3. Hence, we use
these values to find coefficients in the next level until finishing process.

4 Numerical results

Singularly perturbed problem is represented by

ε
∂2u

∂x2 + ∂u

∂x
− u = 1, 0 < x < 1.

Here we set ε = 0.1, subject to the boundary conditions,

u (0) = 0 and u (1) = 0.

The exact solution is

u (x) = (em2 − 1) em1x + (1 − em1) em2x

em2 − em1
− 1,

where

m1 = −1 − √
1 + 4ε

2ε
, m2 = −1 + √

1 + 4ε

2ε
.

To study the accuracy of present scheme, we use the RMS error defined by

RMS =
√∑N

i=1 (ui − uExact )
2

N
, (20)

and L2 norms defined by
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‖ui − uExact‖L2 =
(

N∑
i=1

(ui − uExact )
2

)1
2

. (21)

where ui = u (xi ) , xi are knots in wavelet basis.
We apply the linear and quadratic wavelet bases in our approximations. Numerical

results are shown in Tables 1, 2, 3 and 4. The multilevel augmentation method is
performed at the initial level 3 (W3) for both linear and quadratic bases. The systems
of linear equations are solved iteratively by the Gauss–Seidel method with T O L =
10−12.

The RMS errors by the multilevel augmentation method are almost the same as those
errors obtained by using the multilevel method. Rate of convergence is approximately
order two as expected for the case of linear wavelet while the rate of convergences for
the quadratic wavelet is approximately order four. The comparison between numerical
result and exact solution is shown in Fig. 3. They are in good agreement. In this case,
numerical results are obtained from applying linear basis with level 9.

Table 1 RMS error by linear
wavelet

Level Multilevel augmentation
method

Multilevel
method

W4 3.683109e−03 3.475348e−03

W5 8.281858e−04 8.337140e−04

W6 2.042934e−04 2.053123e−04

W7 5.096677e−05 5.103239e−05

W8 1.272315e−05 1.272720e−05

W9 3.178067e−06 3.178319e−06

W10 7.941528e−07 7.941685e−07

W11 1.984912e−07 1.984922e−07

W12 4.961684e−08 –

Convergence rate 2.0 2.0

Table 2 L2 norms by linear
wavelet

Level Multilevel augmentation
method

Multilevel
method

W4 1.426462e−02 1.345996e−02

W5 4.611143e−03 4.641923e−03

W6 1.621528e−03 1.629616e−03

W7 5.743663e−04 5.751059e−04

W8 2.031724e−04 2.032371e−04

W9 7.184120e−05 7.184689e−05

W10 2.540047e−05 2.540098e−05

W11 8.980494e−06 8.980538e−06

W12 3.175090e−06 –

Convergence rate 1.5 1.5
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Table 3 RMS error by
quadratic wavelet

Level Multilevel augmentation
method

Multilevel
method

W4 6.335132e−05 4.037317e−05

W5 3.645426e−06 2.580418e−06

W6 1.785070e−07 1.618866e−07

W7 1.029555e−08 1.011768e−08

Convergence rate 4.0 4.0

Table 4 L2 norms by quadratic
wavelet

Level Multilevel augmentation
method

Multilevel
method

W4 5.652035e−04 2.247883e−04

W5 2.893467e−05 2.048143e−05

W6 2.011672e−06 1.824370e−06

W7 1.644069e−07 1.615664e−07

Convergence rate 3.5 3.5

Fig. 3 Numerical results by linear wavelet level 9 (circle) and exact solution (line)

Numerical error represented by L2 norms for the multilevel augmentation method
is almost the same as those obtained from standard multilevel method. Rate of con-
vergence is approximately 1.5 as expected for the linear wavelet. Rate of convergence
for quadratic wavelet is shown. It is approximately in order 3.5.

Numerical results show that the proposed multilevel augmentation method is fast
and accurate for solving the problem. It has great advantage in the case of large
unknowns, but the multilevel augmentation method should be applied at high-initial
level to reduce error collection for each upper level. The full system of multilevel
augmentation method is smaller than the standard multilevel method at the same
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level, resulting to much smaller memory to store matrix coefficients. This explanation
is shown in Table 1 for the linear basis. We cannot solve the linear system by the
Gauss–Seidel method in Matlab for the system of level 12. It has no enough memory
in our computer, Intel Core i5-2410M CPU and 4.00 GB memory. But the multilevel
augmentation method can provide numerical results.

5 Conclusions

Multilevel augmentation method using wavelet bases to solve numerically the sin-
gularly problem is presented. This method is fast and accurate for solving linear
differential equations. It has great advantage for solving the case of large unknowns. It
integrates the choices of basis and designs numerical solver resulting to linear system.
We consider both linear and quadratic wavelet bases. Numerical results are presented
to demonstrate the efficiency of this method. The RMS errors by the multilevel aug-
mentation method are almost the same as those obtained from the standard multilevel
method. Rate of convergence is approximately order two for linear basis while it is
approximately order 1.5 in L2 norm sence. Rate of convergences for quadratic wavelet
is approximately in order four while it is approximately order 3.5 in L2 norms. It is
found that the multilevel augmentation method should be applied for relatively high-
initial level to reduce error collection at each level in augmented system. Full system
of multilevel augmentation method is smaller than the standard multilevel method at
the same level, resulting to smaller memory to store matrix coefficients.
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